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Abstract

Comovement of stock market indices increases during turmoil, and does not come down when
the turmoil settles down. This paper explain this upgrade of comovements during turmoil peri-
ods with theories from Bayesian learning and dynamical systems involving synchronization.
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1 Introduction

Forbes and Rigobon (2002) report that during times of high volatility in the series under
consideration correlation coefficient between these series is biased upwards. Lee and Kim
(1993) find that average weekly cross market correlations between 12 major stock markets
increase from 0.23 before the October 1987 crash in the U.S. markets to 0.39 afterwards.
Forbes and Rigobon (2002) explain why the correlations get high during the crash, but
they do not explain the phenomena observed by Lee and Kim (1993). Why the correlations
stay high after the crash? This paper is an attempt to explain the stickiness in correlation
coefficients between stock markets by referring to theory of Bayesian learning.

Our main conclusion is that the correlation does not go down because it is learned during
the turmoil. This learned level of correlation has high precision, so there is little doubt that it
is at a higher level because of a numerical discrepancy. The belief that market movements are
loyal to each other turns into a self-fulfilling prophecy. Traders follow other markets closely
before making trading decisions. So the belief that interdependence between markets are
high during the crash turns into reality by correlated actions of traders in different markets
avoiding correlation to fall to its previous level after the crash.

Is there a draw back in high level of synchronization between markets over the world? One
concern may be diminishing opportunities of cross-country hedging when markets start to
move up and down altogether. Cross-country hedging may be of secondary importance after
cross-industry hedging when the world economies are synchronizing through trade. Also, the
correlation coefficient measuring comovements at higher frequencies may fail to measure the
secular growth in the indices. So hedging opportunities still may exist for investors targeting
long term growth rather that short term speculations.

2. Bayesian Learning

This discussion closely follows the extensive review by Chamley (2004). The information
structure of the model is as follows:

1. The value of the nature’s parameter θ is chosen randomly before the first period ac-
cording to a normal distribution N(θ̄, σ2

θ).

2. There is a countable number n of individuals that receive a private signal si, i =
1, . . . , n: si = θ + εi. Corr(εi, εj) = 0 for i 6= j, and ε ∼ N(0, σ2

ε ). All individuals
have the same payoff function from their actions a: U(a) = −E[(a − θ)2]. Individual
t chooses her action at ∈ R once and for all in period t. Each individual chooses an
action only once, and at each time period, there is only one individual acting. The
individual i is assigned to time t exogenously.

3. The public information at the beginning of period t is made of the prior distribution
N(θ̄, σ2

θ) and the set of previous actions Ht = {at−1, . . . , a1}.
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2.1 Perfect observation of actions

The common quadratic payoff function induces the individuals to choose their beliefs
µ̃t , Et[θ] as their action: at = µ̃t for all t. Since all individuals know the common payoff
function, and aware that it is at the same time common information, they are aware that
the actions reflect beliefs perfectly. So the public belief one period later, µt+1 is equal to
the individual t’s personal belief: µt+1 = µ̃t. The public belief βt ∼ N(µt, σ

2
t ) is updated

according to the Bayesian rule:

µt+1 = (1− αt)µt + αtst, (1)

ρt+1 = ρt + ρε. (2)

where αt = ρε

ρε+ρt
, and ρz , σ−2

z is the precision of a random variable Z in general. As

shorthand, µt , µβt and ρt , ρβt are used.

The updating of mean and variance in (1) and in (2) of the public belief is referred to as
“Gaussian learning rule” and is a consequence of the normal distribution being the conjugate
family of itself. 1 The Gaussian updating rule is particularly interesting since the updating
of the precision ρ is independent of the mean µ.

In the linear case, the recursive equation (2) could be identified as a function of time:

ρt+1 = ρθ + tρε. (3)

So precision grows indefinitely in time, and public belief becomes “almost certain” as t→∞.
The variance σ2

t = 1/ρt converges to zero like 1/t.

2.2 The circular case

The counterpart of the normal distribution on the circle is the von Mises distribution
which has some desirable properties similar to the normal distribution. These properties are
given by Mardia and Jupp (2000, pp.41-43). In this study, one additional property of the
von Mises distribution is crucial: like the normal distribution, it is the conjugate family of
itself. That is, if the prior (distribution of βt) and the signal xt are von Mises, then the
posterior (distribution of βt+1) is von Mises as well.

The setup of the model is similar to the linear case:

1. The value of the nature’s parameter µ is chosen randomly before the first period ac-
cording to a von Mises distribution M(δ, κµ), where δ is the mean direction and κµ is
the precision.

1That is, if the signal st is normal, then the set of possible common distributions for the prior βt and the
posterior βt+1 form the conjugate family of the normal distribution.
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2. There is a countable number n of individuals that receive a private signal xi, where the
stochastic process {xi}i=1,...,n is defined on a probability space (Ω,F , P ) where F is a
σ-algebra on the set Ω, and P is a probability measure on the measurable space (Ω,F).
Specifically, xi = µ + εi. Corr(εi, εj) = 0 for i 6= j, and ε ∼ M(0, κ). All individuals
have the same payoff function from their actions a: U(a) = −E[(a − µ)2]. Individual
t chooses his action at ∈ R once and for all in period t. Each individual chooses an
action only once, and at each time period, there is only one individual acting. The
individual i is assigned to time t exogenously.

3. The public information at the beginning of period t is made of the prior distribution
M(δ, κµ) and the set of previous actions Ht = {at−1, . . . , a1}.

2.3 Perfect observation of actions

The common payoff function induces the individuals to choose their beliefs µ̃t , Et[µ] as
their action: at = µ̃t for all t. Since all individuals know the payoff function is common, they
are aware that the actions reflect beliefs perfectly. So the public belief one period later, µt+1

is equal to the individual t’s personal belief: µt+1 = µ̃t. The public belief βt ∼ M(µt, κt) is
updated according to the Bayesian rule below (Bagchi, 1994) to become the public belief for
the next period: βt+1 ∼M(µt+1, κt+1).

µt+1 = tan−1 κ sin xt + κt sinµt
κ cosxt + κt cosµt

, (4)

κ2
t+1 = κ2

t + κ2 + 2κκt cos(µt − xt). (5)

The updating rule in the von Mises case is particularly interesting: unlike the normal case,
the updating rule for precision depends on the signal xt and the prior mean µt. Three
extreme cases will be considered:

1. Assertive signal
When xt = µt for a certain time interval t, then κt grows by the precision of the signal:
κt+1 = κt + κ. This case is identical with the Gaussian case.

2. Orthogonal signal
When |µt−xt| = π/2 at a certain time interval t, then κ2

t grows by κ2: κ2
t+1 = κ2

t+κ
2 ⇒

κt+1 < κt + κ.

3. Negative signal
When |µt − xt| = π at a certain time interval t, then κt may increase or decrease:
κt+1 = |κt − κ|.

In general, limt→∞ P (A(κ)κt < κt+1 < κt) = 1.2 If the incoming signal has any vector

2see proof of Lemma 1. 0 < A(κ) , I1(κ)/Io(κ) < 1, for 0 < κ < ∞ where Iq(·) is the modified Bessel
function of the first kind of order q. A(κ) is increasing.
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component in the direction of the common belief, definitely there will be gains in terms of
precision. Specifically, the following proposition applies:

Proposition 1 κt+1 > κt when cos(µt − xt) > − κ
2κt

. If κt is growing, history is gaining
more importance over the private signal through formula (4).

Next, we will propose and prove a lemma showing that κt+1/κ converges to tA(κ) in
distribution.

Lemma 1 limt→∞ P (κt+1/κ > tA(κ)) = 1.

Proof.

From (4) and (5) we have the recursive relation

zt+1 = zt + ut ⇒ zt+1 = zo +
t∑

j=1

uj. (6)

for zt and ut complex where zt ≡ κt cosµt + iκt sinµt, ut ≡ κ cosxt + iκ sin xt,
and zo ≡ κµ cos δ + iκµ sin δ.

Then we obtain the real recursive equations

κt+1 cosµt+1 = κµ cos δ + κ
t∑

j=1

cosxj ⇒ Ct ,
t∑

j=1

cosxj =
κt+1

κ
cosµt+1 −

κµ
κ

cos δ, (7)

κt+1 sinµt+1 = κµ sin δ + κ
t∑

j=1

sin xj ⇒ St ,
t∑

j=1

sin xj =
κt+1

κ
sinµt+1 −

κµ
κ

sin δ. (8)

Ct and St are the sufficient statistics that represent the history Ht similar to the sufficient
statistic Tt ,

∑t
j=1 sj in the linear case. Mardia and Jupp (2000) give the distributions for

Rt ≡
√
C2
t + S2

t , and θ̄t ≡ tan−1(St/Ct). We will establish divergence of κt+1/κ without
using the distribution function explicitly. We use (7) and (8) and R2

t = C2
t +S2

t to derive an
expression for κ2R2

t :
κ2R2

t = κ2
t+1 + κ2

µ − 2κt+1κµ cos(µt+1 − δ). (9)

From Mardia and Jupp (2000, p.75)

E[κ2R2
t ] = κ2t2ρ2 + κ2t(1− ρ2) = κ2

µ + E[κ2
t+1]− 2κµE[κt+1 cos(µt+1 − δ)] (10)

where ρ is the mean resultant length of the distribution under consideration. Specifically for
the von Mises case, ρ ≡ A(κ).
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Collecting terms and dividing by t2, we get

E[κ2
t+1/t

2] = κ2ρ2 +
κ2

t
[1− ρ2]−

κ2
µ

t2
+ 2κµE[

1

t2
κt+1 cos(µt+1 − δ)]. (11)

All the terms except the first vanishes as t→∞. The last term vanishes since from the case
of an assertive signal we know supω κt+1(ω) = κµ + κt, ∀ω ∈ Ω and thus limt→∞ κt+1/t

2 = 0
with certainty. Since the cosine function is bounded, it is also true that
limt→∞ κt+1 cos(µt+1 − δ)/t2 = 0 with certainty. We have established that
limt→∞E[κ2

t+1/t
2] = κ2ρ2, or

lim
t→∞

E

∣∣∣∣κ2
t+1

κ2t2
− ρ2

∣∣∣∣ = 0 (12)

which implies 3

κ2
t+1

κ2t2
→L1 ρ

2 ⇒
κ2
t+1

κ2t2
→p ρ

2 ⇒
κ2
t+1

κ2t2
→d ρ

2. (13)

Since the square root function is measurable and continuous over the domain [0,∞), we also
have κt+1

κt
→d ρ. Since κt+1

κt
converges to a constant in distribution, we may conclude that

limt→∞ P
(
κt+1

κt
> ρ

)
= 1 ⇒ limt→∞ P

(
κt+1

κ
> tρ

)
= 1. �

Proposition 2 In a circular social belief system with updating rules (4) and (5), in deter-
mining agents’ actions, the probability that the weight of public belief (relative to private
signals) tending to infinity becomes equal to one as t→∞.

Proof. This is a direct indication of Lemma 1.

Remark 1 Notice that proposition 2 is for a belief distributed with some circular distribution
updated by (4) and (5). It is valid for, but not limited to beliefs distributed with a von Mises
distribution.

Remark 2 Mardia and Jupp (2000) also show that the conditional limiting distribution of
µt+1 when the belief has a von Mises distribution is also von Mises: µt+1|κt+1 ∼M(µ, κt+1)
so that E[µt+1|κt+1] = µ as t → ∞. The expected value of the public belief, given the value
of precision of the belief, converges to the true value µ as time goes to infinity, and with κt+1

tending to infinity in the sense of Lemma 1.

2.4 Learning a leading indicator

In this section, a two dimensional circular learning system will be investigated. The
support of the distribution in this case will be again a manifold, a torus. It will be assumed

3The converge concepts here are →L1 : convergence in the first moment, →p: convergence in probability,
and →d: convergence in distribution.
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that the expected cosine of the difference between signal x1t and x2t is the cosine of a certain
angle α. For this case, Mardia and Jupp (2000) propose a distribution on a torus with
density proportional to:

exp{κ1 cos(x1t − µ1) + κ2 cos(x2t − µ2) + (cos x1t, sin x1t)D(cosx2t, sin x2t)
′} (14)

where D = a

[
cosα − sinα
sinα cosα

]
which is a multiple of a rotation matrix.

Also, we used the notation (·, ·)′ to denote transpose of a vector.

This setting is similar to the one dimensional setting discussed before. Nature picks two
variables µ1 and µ2, the constant change (frequency) in two economic circular variables at
each time interval, from a distribution proportional to

exp{κµ1 cos(µ1 − δµ1) + κµ2 cos(µ2 − δµ2) + (cosµ1, sinµ1)D(cosµ2, sinµ2)
′} (15)

where D is as defined above.

The parameters of the distribution, κµ1 , δµ1 , κµ2 , δµ2 and D are known. Each time interval
has two sub-intervals, t− and t+. Signal x1t arrives at the beginning of t− (or t) and x2t

arrives at the beginning of t+. Since the signals are correlated through matrix D, agents will
use x1t as a “leading indicator” to form their expectations on x2t. The Bayesian updating
rules for this case will be

µjt+1 = tan−1 κjt cosµjt + κj cosxjt
κjt sinµjt + κj sin xjt

, (16)

κ2
jt+1 = κ2

jt + κ2
j + 2κjκjt cos(xjt − µjt)

for j = 1, 2. Association between the signals will be learned according to the updating rules
below:

4ψt+1 = tan−1 Rt cos4ψt + a cos(x1t − x2t)

Rt sin4ψt + a sin(x1t − x2t)
, (17)

R2
t+1 = R2

t + a2 + 2aRt cos(x1t − x2t −4ψt)

where the belief on cosα has mean cos4ψt and precision Rt at the end of period t. The
agents can use the identities Et− cos(x1t−x2t) = ρt cos4ψt and Et− sin(x1t−x2t) = ρt sin4ψt
to derive

Et− cos(x2t − µ2t) = ρt cos(x1t − µ2t −4ψt). (18)

The unknown parameter ρt could be approximated as ρt ' A(Rt+A
−1(A(κ1t)A(κ2t))) under

the assumption that α = µ1 − µ2. Note that ρt is increasing in Rt, κ1t, and κ2t.

The scenario is as follows: the index of market 1 makes a big jump down as a result of
a local shock. The investors in market 2 forecast their market index using market 1 index
as a leading indicator according to the formula above. Their forecast indicate a fall in their
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index as there is a learned association between two indices, and also due to the fact that
now there is a big change in the usual frequency of market 1. Investors in market 1 start to
sell in order not to get hit by the forecasted downfall.

The accuracy of the association Rt may fall at the beginning, but as both indices start
falling fast, Rt increase with repetitive observations arriving confirming similar changes in
the phases of the indices. With increasing Rt investors start to ignore the new signals, but
go with their belief that the indices have a strong association between them. The strong
association between the indices turns into a self-fulfillig prophecy.

Even when small local shocks start to take effect again, the learned strong association
between the indices prevails. It takes a long time before the investors de-learn the strong
association between the indices, and for the correlation between the indices to go down to
the level before the shock.

3 Dynamical Systems Approach

3.1 Synchronization of indices

It is known that two systems linked with “coupling parameters” δ1 and δ2, and “natural
frequencies” ω1 and ω2 will synchronize, and there will be a steady-state equilibrium where
the phase difference between the series is constant over time. An unstable state is also
present where the phase difference will be fluctuating, generating a quasiperiodic state in
time domain (Stratonovich, 1967, chapter 9, sec.2).

Definition 3.1 Two coupled systems are defined, in general, as

Ẋt = f1(Xt)− δ1P1(Xt, Yt), (19)

Ẏt = f2(Yt) + δ2P2(Xt, Yt), δ1 > 0, δ2 > 0.

where P1 and P2 are deterministic functions. When the functions f1 and f2 are assumed to
be generating series with constant amplitudes, and with noisy frequencies averaging to ω1

and ω2 respectively (i.e., the processes {Xt} and {Yt} go through a steady state cycle when
independent) the analysis could be carried out in terms of phase series only.

φ̇1t = ω1 − δ1Q1(φ1t, φ2t) + ζ1t, (20)

φ̇2t = ω2 + δ2Q2(φ1t, φ2t) + ζ2t,

where ζ1t and ζ2t are additive noise terms on observed frequencies of the series. The functions
Q1 and Q2 are the phase space counterparts of functions P1 and P2 respectively, derived
under the assumption of constant amplitudes. For details on phase space representation and
approximation of functions, see Aronson, Ermentrout, Kopell (1990) and Pikovsky et. al.
(2001, pp.222-229).
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Assuming that synchronization occurs in only one frequency of the series, and omitting
all the resonance terms, the system can be represented in terms of the phase difference
ψt ≡ φ1t − φ2t between the series.

ψ̇t = ν − (δ2 + δ1) sinψt + ζ1t − ζ2t, (21)

with a first degree Fourier expansion of functions Q1 and Q2 that are assumed to be identical.
Also ν ≡ ω1 − ω2.

Stratonovich (1967) gives the solution for the stationary distribution of ψ under bounded
noise4, and for δ2 + δ1 > 0. When ν = 0, this distribution is von Mises, with ψ ∼ M(0, κ),
κ , (δ2 + δ1)/σ

2 where σ2 , V ar(ζ1 − ζ2) ≡ σ2
1 + σ2

2 − 2σ12, σ
2
j , V arζj, j = 1, 2,

σ12 , Cov(ζ1, ζ2). The correlation coefficient r in this case will be an increasing function of
κ as derived by Koopmans (1974):

r ≡ A(κ) (22)

where A(κ) ≡ I1(κ)/I0(κ) and Ip is the modified Bessel function of the first kind of order p .
Since A(κ) is monotonically increasing, this approach implies increasing correlation between
the series when covariance between the noise terms is increasing. Also when 4δ2 +4δ1 > 0,
the correlation between the series will be increasing. This feature is similar to features of the
models introduced by Barnett and Dalkir (2007, equation 3.34) and Dalkir (2004, equation
8).

The case where ν 6= 0 is slightly more complicated. In this situation the mean of the
stationary distribution is not zero. Under bounded noise the phase difference will be stable
around the steady state solution ψ? 6= 0.5 If we define γψ , ψ̇, then the time average of γψ
will be

γψ ≡ π−1σ2|Iiν̄(κ)|−2 sinh(πν̄) (23)

where ν̄ ≡ ν/σ2 and κ is as defined above. Also Iiν̄(·) is the modified Bessel function of the
first kind of complex order.

The dynamical system approach is also in parallel with the Bayesian learning approach
of section 2. When the index of market 1 starts falling as a result of a shock, this will be
observed as a common shock by the investors of market 2. In the system above, this will
be reflected as an increase in the covariance σ12 believed to exist between the indices. As
the formula (23) (or formula (22)) implies, an increase in covariance will initiate a drop in
average change in phase difference (Stratonovich 1967, pg.242) (or increase in correlation
between the series). As the phase differences converge (correlation increase), the value of δ2,
representing association between indices 2 and 1 is believed to increase. That will further
decrease the average change in the phase difference γψ (increase the correlation coefficient
r). In the case where investors believe that the effect of the common shock vanished, or σ12

4Namely, if |ζ1 − ζ2| < π.
5If |ζ1 − ζ2| < π − 2ψ? where ψ? = sin−1 ν

δ1+δ2
, −π

2 < ψ? < π
2 is the steady state phase difference. Also

ν 6= 0 ⇒ ψ? 6= 0.
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drops back to its previous level before the shock, the persisting higher level of δ1 + δ2 will
keep γψ at its lower level (r at its higher level).

3.2 Reduction in volatility

An immediate question follows after the previous section is whether the stronger associa-
tion between stock market indices have any advantages. One advantage that could be cited
under the dynamical systems framework is the reduction in the volatility of the systems
when there is an association between them.

Malakhov (1968) provides the formal treatment of the situation. If the stock market
indices are closely associated so that we can neglect the volatility in their phase difference
relative to the volatility in the individual phase series, the condition for reduced volatility
compared to the case where the indices have no association between them becomes as the
following.

Proposition 3 If two stock markets are close to a synchronized state, that is the volatility
in their phase difference ψ is negligible relative to the volatility in the individual phase series,
σ2

1 and σ2
2, the variance of both index series will be at the same level (δ2

2σ
2
1 + δ2

1σ
2
2)/(δ1 + δ2)

2

and further, if
δ2

2δ1 + δ2
<
σ2

2

σ2
1

<
δ1 + 2δ2
δ1

(24)

holds then this common variance will be smaller than or equal to the variances of the inde-
pendent indices, σ2

1 and σ2
2.

Proof.

The proof closely follows Malakhov (1968) as translated in Pikovsky et al. (2001.) First
define ψ = φ1 − φ2, θ = δ2φ1 + δ1φ2, ν = ω1 − ω2. Then

ψ̇ = ν − (δ1 + δ2) sinψ + ζ1 − ζ2, (25)

θ̇ = δ2ω1 + δ1ω2 + δ2ζ1 + δ1ζ2,

V ar(θ̇) = δ2
2σ

2
1 + δ2

1σ
2
2.

Write the phases in the form φ1 = δ1ψ+θ
δ1+δ2

and φ2 = −δ2ψ+θ
δ1+δ2

. When the economies are phase

locked, their phase difference is constant, so that ψ̇ = 0. We find

V ar(φ̇1) =
δ2
2σ

2
1 + δ2

1σ
2
2

(δ1 + δ2)2
= V ar(φ̇2). (26)

For the closed economies, Ṽ ar(φ̇j) is σ2
j , j = 1, 2. It is easy to verify that

δ2
2σ

2
1 + δ2

1σ
2
2

(δ1 + δ2)2
< σ2

j , j = 1, 2, (27)
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when the proposition is satisfied. �

The proposition 3 could specifically be considered for equally strong association between
the markets: δ1 = δ2. In this case, the condition in proposition 3 will be reduced to
1/3 < σ2

2/σ
2
1 < 3. Both stock markets will benefit from a reduction in volatility in this case,

and their common volatility will be (σ2
1 + σ2

2)/4. Additionally, if these two markets have
equal volatility when they are not associated (σ2

1 = σ2
2), then their volatility will reduce by

half once they become synchronized.

4 Conclusion

Our main conclusion is that the correlation does not go down because it is learned during
the turmoil. This learned level of correlation has high precision, so there is little doubt that
it is at a higher level because of a numerical discrepancy. The belief that market movements
are loyal to each other turns into a self-fulfilling prophecy after the crisis. Traders follow
other markets closely before making trading decisions. It is the belief that interdependence
between markets are high during the crash that avoids correlation to fall to its previous level
after the crash.

A question is due: Are comovements more synchronized after crashes in all frequency
bands?
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